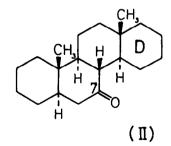

FRONT OCTANT EFFECTS IN THE CIRCULAR DICHROISM OF KETONES D.N. Kirk, W. Klyne, and W.P. Mose


Chemistry Department, Westfield College, Hampstead, London, NW3 75T (Received in UK 9 February 1972; accepted for publication 24 February 1972)

Chiroptical phenomena associated with the carbonyl $n \rightarrow \Pi^*$ transition have been regarded for more than a decade as following the "Octant Rule",¹ although experimental evidence for the reversal of signs in the front octants has been so scanty as to be considered inconclusive by some workers.² Certainly no reliable data have existed to provide a quantitative indication of "front octant" effects;³ our own and earlier attempts to assign numerical values to the c.d. contributions of structural features in <u>rear</u> octants have, however, met with partial success, especially for all-<u>trans</u> arrays of cyclohexane rings.⁴

We now report the preparation of the des-<u>D</u>-analogue (I) of 5α -androstan-7-one (the tricyclic compound, lacking ring <u>D</u>). With intact 7-oxo 5α -steroid structures available in 5α -androstan-7-one, 5α -cholestan-7-one, and also <u>D</u>-homo- 5α -androstan-7-one (II), ⁵ it is now possible, by direct comparisons with the des-<u>D</u> compound, to assign numerical values to the c.d. contributions of ring <u>D</u>, most of which lies in the region generally designated as "front octant".⁶

The Table gives data both for the $n \rightarrow \Pi$ * transition (<u>ca</u>. 290-295 nm) and also for the shorter wavelength absorption band (<u>ca</u>. 190 nm, tentatively assigned to the $n \rightarrow O$ * transition), for which we have recently⁷ reported observation of chiroptical properties.

Table. C.d. Data for 7-Oxo-5α-Steroids. ^a							
Compound	290 nm (n $\rightarrow \pi$ *) transition				190 nm (n \rightarrow O *) transition		
	in M	ie OH	in he	xane	in h	exane	
	Δε	∆∆ε ^b	Δε	∆∆ε ^b	Δε	ΔΔε ^b	
Des- <u>D</u> -13β(H)- 5α-androstan- 7-one (I)	-0.85	_	-0.48	-	+1.0	-	
5 Q-Androstan- 7-one	-0.62	+0.23	-0.33	+0.15	-1.1	-2.1	
5α-Cholestan- 7-one	-0.64	+0.21	-0.48	0.00	-2.9	-3•9	
<u>D</u> -Homo-5α- androstan- 7-one (II)	+0.13 ^c	+0.98	+0.17	+0.65	-4.3	-5.3	

^aMeasurements made in this Department with a Jouan Dichrograph (model CD 185) in methanol) or with a Cary 6002 c.d. attachment (in hexane).

^b $\Delta\Delta\epsilon$ is the difference $\Delta\epsilon$ (tetracyclic structure) minus $\Delta\epsilon$ (tricyclic analogue (I)).

^CMeasurement in methanol-hexane (3:1), for reasons of solubility: the $\Delta \varepsilon$ value for 5 α -cholestan-7-one in a similar mixture (-0.62) was not significantly different from that in methanol.

Comparison of data for the des-<u>D</u> and <u>D</u>-homo compounds reveals significant contributions to $\Delta \varepsilon$ from the <u>D</u> ring. The positive sign of this contribution ($\Delta \Delta \varepsilon$) for the n $\rightarrow \pi$ * transition corresponds to the expected "front octant" behaviour, reversing the sign for the corresponding rear octant (see Figure). The value of $\Delta \Delta \varepsilon$ in methanol (+0.98) is notably greater than that in hexane (+0.65), the proportional difference (50%) being somewhat larger than we have observed previously for "rear octant" groups (values in methanol are generally 25-30% greater than in hexane⁴).

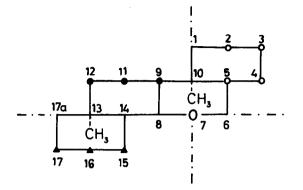


Figure. Octant projection of D-Home- 5α -androstan-7-one.

- atoms in rear octant,
 positive contribution.
- O = atoms in rear octant, negative contribution.
- ▲ = atoms probably in front octant; these are missing in the des-D-analogue (I).

The "front octant" contributions of the <u>D</u> ring to observed $\Delta \varepsilon$ values are much smaller for 5 α -androstan-7-one and 5 α -cholestan-7-one, where only two carbon atoms of the five-membered ring <u>D</u> $\begin{bmatrix} C_{(15)} & \text{and } C_{(16)} \end{bmatrix}$ can be considered to lie in the front octant. It is perhaps more significant that the $C_{(15)}$ -methylene group is slightly further from the carbonyl oxygen than in the <u>D</u>-homo analogue, as a consequence of the strain in ring <u>D</u> (X-ray data⁸ show that the valence angle $C_{(8)}^{-C}C_{(14)}^{-C}C_{(15)}$ is enlarged to nearly 120° in normal steroids). Apparently the contribution of a ring projecting into the front octant is considerable only when it approaches the carbonyl group very closely.

We have already commented⁷ upon the major role of axial substituents in the short wavelength (<u>ca</u>. 190 nm) dichroism of cyclohexanone analogues, but were unable at that time to estimate the contributions of "front octant" groups. The negative values of $\Delta\Delta\epsilon$ in the final column of the Table show there is no indication of "front octant" behaviour for this transition, the data being better accommodated by a quadrant rule covering the spatial regions so far explored. Signs for the quadrants correspond to those of the <u>rear</u> octants in the normal carbonyl Octant rule, with no reversal of sign in the front regions. Again the contribution is greater for the six-membered <u>D</u>-homo ring than for the normal five-membered ring, probably for the reasons discussed above.

The tricyclic ketone (I) was prepared by an unexceptional route from $\beta\beta$ -hydroxy-des-<u>D</u>-androst-5-en-14-one, the "Köster-Logemann" ketone (cf. ref. 5 for an analogous synthesis of the <u>D</u>-homo 7-ketone); its structure is supported by

microanalytical and spectroscopic data.

We are indebted to the Science Research Council and the Medical Research Council for support, and to Dr. G. Anner, Ciba-Geigy A.G., Basel, for a generous supply of the "Köster-Logemann" ketone.

REFERENCES

- W. Moffitt, R.B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi,
 J. Amer. <u>Chem. Soc.</u>, 1961, <u>83</u>, 4013.
- J.A. Schellman, <u>J. Chem. Phys</u>., 1966, <u>44</u>, 55; E.G. Höhn and O.E. Weigang, <u>ibid</u>., 1968, <u>48</u>, 1127; G. Wagnière, <u>J. Amer. Chem. Soc</u>., 1966, <u>88</u>, 3937.
- 3. C. Djerassi and W. Klyne, <u>J. Chem. Soc</u>., 1963, 2390. Early o.r.d. data for 1-oxo-5α-steroids suggested a "front octant" contribution from parts of rings C and D, but the interpretation was only qualitative: possible effects of the side-chain (at C-17), and of the strained ring D, still cannot be assessed.
- 4. D.N. Kirk, W. Klyne, and S.R. Wallis, <u>J. Chem. Soc. (C)</u>, 1970, 350.
- 5. D.N. Kirk and M.A. Wilson, J. Chem. Soc. (C), 1971, 414.
- For a recent proposal concerning the shape of the boundary surface between front and rear octants, see: C. Coulombeau and A. Rassat,
 <u>Bull. Soc. chim. France</u>, 1971, 516; see also Y.-H. Pao and D.P. Santry,
 J. Amer. Chem. Soc., 1966, <u>88</u>, 4157.
- 7. D.N. Kirk, W.P. Mose, and P.M. Scopes, <u>Chem. Comm.</u>, 1972, 81.
- 8. C. Altona, H.J. Geise, and C. Romers, <u>Tetrahedron</u>, 1968, <u>24</u>, 13.